Authors: Md. Tahrim Faroque Tushar, Yan Yang, Md Zakir Hossain, Sheikh Motahar Naim, Nabeel Mohammed and Shafin Rahman.
Venue:  British Machine Vision Conference (BMVC),
Keywords: Smile veracity classification, Facial landmark-based transformer
Link: https://bmvc2022.mpi-inf.mpg.de/0369.pdf
Abstract: Smile veracity classification is a task of interpreting social interactions. Broadly, it distinguishes between spontaneous and posed smiles. Previous approaches used handengineered features from facial landmarks or considered raw smile videos in an end-toend manner to perform smile classification tasks. Feature-based methods require intervention from human experts on feature engineering and heavy pre-processing steps. On the contrary, raw smile video inputs fed into end-to-end models bring more automation to the process with the cost of considering many redundant facial features (beyond landmark locations) that are mainly irrelevant to smile veracity classification. It remains unclear to establish discriminative features from landmarks in an end-to-end manner. We present a MeshSmileNet framework, a transformer architecture, to address the above limitations. To eliminate redundant facial features, our landmarks input is extracted from Attention Mesh, a pre-trained landmark detector. Again, to discover discriminative features, we consider the relativity and trajectory of the landmarks. For the relativity, we aggregate facial landmark that conceptually formats a curve at each frame to establish local spatial features. For the trajectory, we estimate the movements of landmark composed features across time by self-attention mechanism, which captures pairwise dependency on the trajectory of the same landmark. This idea allows us to achieve state-of-the-art performances on UVA-NEMO, BBC, MMI Facial Expression, and SPOS datasets.

Leave a Reply

Your email address will not be published. Required fields are marked *